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a b s t r a c t

The complex reactions of typical medical waste materials pyrolysis and the evolution of different volatile
species can be well represented by a Distributed Activation Energy Model (DAEM). In this study, A ther-
mogravimetric analyser (TGA), coupled with Fourier transform infrared analysis of evolving products
(TG-FTIR), were used to perform kinetic analysis of typical medical waste materials pyrolysis. A simple
direct search method was used for the determination of DAEM kinetic parameters and the yield of individ-
ual pyrolysis products under any given heating condition. The agreement between the model prediction
and the experimental data was generally good. The results can be used as inputs to a pyrolysis model based
Medical waste
Pyrolysis modeling
Distributed Activation Energy Model
(
T

on first-order kinetic expression with a Gaussian Distribution of Activation Energies as a sub-model to
CFD code.
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. Introduction

Medical waste, if not treated properly, may be hazardous to both
eople and the environment. As the incineration of medical waste

s underdeveloped in China and other countries, the understanding
f the evolution of volatile species during medical waste pyrolysis
s important for improving incineration plant design and control
or medical waste incineration. But the process of medical waste
ncineration is a very complex phenomenon involving heating-up,
yrolysis, oxidation of the volatiles and chars, multiple reactions
nd complicated flow fields. In a reductive atmosphere, the volatiles
ay not have a chance to be oxidized. So pyrolysis is an important

art of the entire process and due to the tremendous diversity of
edical waste feedstocks. However, few detailed model for evolu-

ion species in medical waste was found in the available literature.
he lack of data, combining with the large variety and complexity
f medical wastes, leads to difficulties in understanding thermal
reatment process for medical wastes. So it is necessary to develop
pyrolysis model to predict the evolution yield during the pyrolysis
nder different conditions for various medical wastes.
Thermogravimetry (TG) has been widely used in the kinetic
nalysis and the determination of the kinetic parameters of solid-
tate reactions [1–3]. However, the kinetic parameters obtained
orm the TGA data correspond to the overall conversion process,
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hich differ from the individual kinetic parameters of evolving
pecies during the pyrolysis process. On the other hand, Fourier
ransform infrared spectroscopy (FTIR) results can be used to evalu-
te the functional groups and prove the existence of some emissions
4,5]. TG combined with FTIR was a useful tool in dynamic analysis
s it continuously monitored both the time dependent evolution
f the gases and the weight of the non-volatile materials (residue).
t has already been used widely to investigate material pyrolysis,
s well as to forecast the hazardous emissions that may be pro-
uced in the case of major accidents [6]. From the TG-FTIR analysis,
e could obtain the evolution products and its yield characteris-

ics. Then, the kinetic parameters for each volatile species can be
erived.

In the available literatures, Distributed Activation Energy Model
DAEM) has been widely used to analyze complex reactions such
s pyrolysis of various ranks of coal and biomass [7–11], as well
s used to analyze the evolution of different volatile species dur-
ng pyrolysis [12,13]. And different methods were used to solve the
AEM model to obtain the kinetic parameters [8,9,14–18]. Miura

8,9] used only three sets of experimental data to obtain both f(E)
nd frequency factor k0(E), Günes and Günş[14] used a simple direct
earch method for the determination of DAEM kinetic parameters
rom only one set of experimental data. Thakur and Nuttal [15]

nd Xiang et al. [16] presented the Marquardt non-linear regression
ethod to establish the kinetic parameters. Cai and Liu [18] devel-

ped a new DAEM, which considering the reaction order and the
ependence of frequency factor on temperature. And parametric
tudy of the nth-order Gaussian DAEM and nth-order Weibull

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:jiangxg@cmee.zju.edu.cn
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AEM also been performed [19,20]. After the heating rate was spec-
fied and kinetic parameters were available, computer codes based
n DAEM, such as FG-DVC [21,22] and FLASHCHAIN [23–25], can
e used to predict the yield of individual pyrolysis products. Then
he product yield predictions can be used as inputs to the CFD com-
ustion code. While combustion and pyrolysis models for coal and
iomass were increasing applied in CFD studies, there were few
nalogous models available for medical waste pyrolysis in CFD com-
utations at the present time. Thus it is greatly needed to obtain the
inetic parameters for medical waste pyrolysis process.

In this study, modeling of volatile species evolution during
ypical medical waste materials pyrolysis on the basis of ther-

ogravimetric analyser (TGA), coupled with Fourier transform
nfrared analysis of evolving products (TG-FTIR) data is presented.
s well, a direct search method for the determination of Gaussian
istribution of Activation Energies kinetic parameters is presented.
fter the kinetic parameters were derived, the DAEM model can be
oupled with CFD code to get the instantaneous temperature as
nput and deliver the product yields as outputs.

. Experimental materials and method

.1. Experimental materials

In our previous work [26], absorbent cotton, medical respira-
or and bamboo stick were chosen as experiment materials since
hese materials are typical medical wastes. All samples were dried
n an oven at 105 ◦C for 3 h to remove the moisture of the sample
o minimize the interaction in the pyrolysis phase of particle con-
ersion. The results of elemental analysis of samples are shown in
able 1.

.2. Experimental method

The Nicolet Nexus 670 spectrometer and Mettler Toledo
GA/SDTA851e thermo analyzer were coupled by a Thermo-Nicolet
GA interface model, of which the stainless transfer line and gas
ell were set to 180 ◦C to minimize the change of evolved gas.
amples were heated at 30 ◦C min−1 in a nitrogen environment,
he volatile products were swept immediately into the gas cell,
hich minimized secondary reactions. Pyrolysis products were

nalyzed by Fourier transform infrared (FTIR) spectroscopy, reso-
ution in FTIR was set as 4 cm−1, and the spectral region was set as
000–400 cm−1. Approximately 12 mg samples were used in the
tudy. A detailed description of the TG-FTIR can be found in the
iterature [26].

. Theory and method
.1. DAEM equation

To analyze complex reaction, the so-called DAEM has been
idely utilized, the model has been applied to represent the change

k
m
m

able 1
roximate and ultimate analysis of materials

aterial Proximate analysis (%)

Moisturea Ashb Volatiles Fixed carbon

otton 6.46 0.20 96.40 3.60
espirator 7.01 4.14 92.47 7.53
amboo stick 9.77 1.96 82.17 17.83

nless stated otherwise, all data are expressed in weight percent on a dry, ash-free basis.
a As-received basis.
b Dry basis.
aterials 162 (2009) 646–651 647

n overall conversion and/or the change in the yield of a given con-
ersion during coal and biomass pyrolysis. DAEM assumes that the
volution of a given product involves an infinite number of indepen-
ent chemical reactions. Each reaction contributes to the reaction
f a product according to:

dYi

dt
= −kiYi (1)

where Yi refers to the unreacted mass fraction of species i in
he initial material and ki denotes the rate constant of the cor-
esponding reaction. The rate constant ki typically has Arrhenius
orm. Integrating Eq. (1) over time and over all reactions with differ-
nt activation energies distribution fi(E), one obtains the following
xpression:

Yi

Yi,0
=

∫ ∞

0

exp

(
−

∫ t

0

ki(E) dt

)
fi(E) dE (2)

here Yi,0 is the initial mass fraction of species i in the mate-
ial before pyrolysis starts. Usually, fi(E) is taken to be a Gaussian
istribution with a mean activation energy of Ei,0 and a standard
eviation �i. hence:

i(E) = 1

(�i(2�)1/2)
× exp

(
−(E − Ei,0)2

(2�i
2)

)
(3)

When a sample is heated at a constant heating rate H from a low
emperature T0, then the temperature of sample at time t is given
y:

= T0 + Ht (4)

ets define ˚(E, T) = exp

(
−

∫ t

0

ki(E) dt

)
(5)

Using the Arrhenius form ki and P(x) = exp(−x)/x2, Eq. (5) is
ewritten as follows [8,14]:

(E, T) =
(

exp(−(ki,0RT2)
(HE) × exp(−E/(RT))

)
(6)

Using Eqs. (3) and (6), one may express Eq. (2) for the yield as:

Yi

Yi,0
= 1

(�i(2�)1/2
×

∫ ∞

0

exp

(
−ki,0RT2

(HE)

)

× exp

(
(−E/(RT)) − (E − Ei,0)2

(2�i
2)

)
dE (7)
Eq. (7) is the final equation from this paper for obtaining the
inetic parameters of typical medical waste materials pyrolysis and
odeling of volatile species evolution during typical medical waste
aterials pyrolysis.

Ultimate analysis (%) QHHV (MJ/kg)

C H O N S

44.92 9.00 45.86 0.19 0.03 15.789
51.28 6.69 41.71 0.18 0.14 18.103
50.76 5.91 42.98 0.28 0.07 17.446

Oxygen content was determined by difference.
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Table 2
Kinetic parameters (k0, E0 and �) and correlation coefficients (r) for absorbent cotton
pyrolysis

Species T (K) k0 (s−1) E0 (kJ mol−1) � (kJ mol−1) s r

CO 586–713 1e + 15 188.5 4.2 0.001662 0.998
CO2 586–713 1e + 20 248.0 5.2 0.000967 0.992
H2O 586–713 1e + 21 260.5 1.2 0.000645 0.997
Hydrocarbon 586–713 1e + 23 289.0 8.0 0.001817 0.984
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Fig. 1. The block diagram of computer program.

.2. Numerical solution of DAEM equation

There are some mathematical difficulties in the determination
f the Gaussian DAEM kinetic parameters due to the structure of
he DAEM equation. The structure of DAEM equation also causes

any difficulties in the use of general purpose curve fitting soft-
ares. In the previous studies, these parameters were established
sing methods such as (1) non-linear Hooke and Jeeves optimizing
ethod [17]; (2) Marquardt non-linear regression method [15,16].

3) and Tmax method [8,9,12]. In the Tmax method, some difficulties
an be encountered when peaks are not well resolved, in which
ases substantial shifts in Tmax can occur. The exact value of Tmax

ay also be difficult to determine for large, broad peaks. (4) Search
ethod, Cai and Ji [27] presented a pattern search method and
üneş and Günş [14] presented a direct search method to deter-
ine the DAEM kinetic parameters from the TGA data of coals and

he frequency factor was assumed to be constant at 1.67 × 1013 s−1.
n this study, a direct search method to be used for the determina-
ion of DAEM kinetic parameters from the TG-FTIR data of typical

edical waste materials is presented. A computer program using
++ has been written to perform the numerical solution of Eq. (7)

nd the Simpson’s 1/3 rule has been used for integration. The block
iagram of this computer program is given in Fig. 1. E0 values were
etween 100 and 300 kJ/mol, obtained value for � was between 0.5
nd 50.5 kJ/mol, also value for k0 was between 107 and 1027. Under
ertain k0, E0 and �, Yi/Yi,0 from Eq. (7) can be solved for each reac-

e
a
T
e
T

able 3
inetic parameters (k0, E0 and �) and correlation coefficients (r) for medical respirator py

pecies T (K) k0 (s−1) E0 (kJ m

O 567–784 1e + 24 294.5
O2 567–784 1e + 21 256.0
2O 567–784 1e + 19 232.0
ydrocarbon-1 567–675 1e + 22 293.5
ydrocarbon-2 675–739 1e + 14 218.5
ydrocarbon-3 739–784 1e + 17 243.5
ldehyde 567–784 1e + 20 245.5
etone 567–784 1e + 17 209.0
cid 567–784 1e + 15 184.5

f a given volatile product evolves in multiple peaks, the corresponding pools of the precu
ldehyde 586–713 1e + 19 237.5 3.3 0.000581 0.999
etone 586–713 1e + 21 262.0 4.5 0.000612 0.996
cid 586–713 1e + 20 249.5 5.1 0.000731 0.992

ion. Kinetic parameters searched for the sample will be k0, E0 and
values where s is minimized in all conditions.

=
n∑

j=1

((
Yi

Yi,0

)
TG-FTIR

−
(

Yi

Yi,0

)
DAEM

)2

(10)

here n is data number in one serial data. (Yi/Yi,0)TG-FTIR and
Yi/Yi,0)DAEM are experimental value of mass transform fraction
rom TG-FTIR analysis and calculated value of mass transform frac-
ion from DAEM model.

. Results and discussion

From the direct search method discussed above, Eq. (7) can be
sed for each species that evolved as a single peak in the TG-FTIR
xperiment. To identify the volatile species from the TG-FTIR, the
ollow steps should be took. First, we fix the time according to

aximum spectral intensity, and divide the spectrum into unique
ortion and lower-noise portion. Second, we establish preliminary

dentification of functional groups that exist in the spectrum. Third,
e check the library in OMNIC and find possible species in the

ibrary, pay attention to large and conspicuous peaks of each species
pectrum, then compare the experiment spectrum with the stan-
ard species spectrum, pay attention to the unique portion and take
are of the low-noise portion of the spectrum. Fourth, CO2; CO and
2O can be identified directly, we separate the known compounds
y subtracting them from the mixture spectrum. Once this is done,
eatures from the spectrum could be read more easily. Combined
ith the 3D spectrum, main products can be identified as follows:

O2; CO; H2O; acid; aldehyde; ketone and hydrocarbon. A detailed
escription of the procedures used for species identification and
ata analysis can be found in our previous study [26].

If a given volatile product evolved in multiple peaks, the cor-
esponding pools of the precursor material are numbered 1, 2,

tc. Thus, the pyrolysis process of typical medical waste materi-
ls can be described completely by many equations. The results of
G-FTIR experiments from ref. [26] were used to fit model param-
ters to experimental data, and the kinetic parameters are given in
ables 2–4.

rolysis

ol−1) � (kJ mol−1) s r

1.9 0.000587 0.991
8.8 0.011694 0.965
0.5 0.004079 0.990

15.85 0.002417
48.6 0.001445 0.960

0.5 0.005246
1.8 0.004658 0.973
3.6 0.003594 0.992
2.4 0.002215 0.999

rsor material are numbered 1, 2, etc.
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Fig. 2. Comparison of yield ratio for each pyrolysis product from TG-FTIR experiment and DAEM model prediction (bamboo stick (�), absorbent cotton (©), medical respirator
(�)).
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Table 4
Kinetic parameters (k0, E0 and �) and correlation coefficients (r) for bamboo stick pyrolysis

Species T (K) k0 (s−1) E0 (kJ mol−1) � (kJ mol−1) s r

CO-1 483–559 1e + 15 190.5 19.6 0.000142
CO-2 559–659 1e + 16 194.0 14.05 0.000652 0.994
CO-3 659–795 1e + 25 292.5 48.45 0.004527
CO2-1 483–550 1e + 25 293.0 20.5 0.000056
CO2-2 550–663 1e + 25 295.0 22.5 0.001052 0.996
CO2-3 663–795 1e + 25 276.0 49.0 0.000614
H2O-1 483–573 1e + 25 291.0 14.15 0.000038
H2O-2 573–636 1e + 09 108.0 2.2 0.001021 0.988
H2O-3 636–795 1e + 14 166.5 1.55 0.000067
Hydrocarbon-1 483–627 1e + 19 255.5 26.05 0.000179
Hydrocarbon-2 627–699 1e + 07 110.5 21.45 0.000769 0.995
Hydrocarbon-3 699–749 1e + 19 274.0 32.2 0.002071
Hydrocarbon-4 749–795 1e + 15 215.5 0.5 0.000959
Aldehyde-1 483–537 1e + 26 295.5 18.5 0.000063
Aldehyde-2 537–663 1e + 09 107.5 4.9 0.001847 0.999
Aldehyde-3 663–795 1e + 24 239.5 49.05 0.000148
Ketone-1 483–537 1e + 26 292.0 18.85 0.000086 0.997
Ketone-2 537–668 1e + 18 209.5 16.9 0.001210
Ketone-3 668–795 1e + 20 206.0 49.0 0.001637
Acid-1 483–618 1e + 25 282.0 17.0 0.001795 0.987
A 14.5
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cid-2 618–795 1e + 10 1

f a given volatile product evolves in multiple peaks, the corresponding pools of the

For all these three samples, there are seven kinds of volatile
pecies listed in Tables 2–4. For the absorbent cotton sample, each
olatile product evolved in a single peak, this corresponds to 7
quations which describe the pyrolysis of absorbent cotton. For
he medical respirator sample, the hydrocarbon product was found
o evolve in three peaks, this corresponds to 9 equations which
escribe the pyrolysis of medical respirator. For the bamboo stick
ample, one volatile species evolved as two peaks, five as three
eaks, and hydrocarbon as four peaks. The number of equations
escribing bamboo stick pyrolysis is 21. Each of these expressions
ad the form of Eq. (7).

Data of Tables 2–4 show that the mean activation energies and
re-exponential factors for the three samples had some differences,
his was not surprising as the TG-FTIR data show they had differ-
nt TG and DTG decomposition peaks. In the same sample, the
inetic parameters were different to each volatile species, since
he precursor pool (peak) and pool size to each species were dif-
erent. This wide range of kinetic parameter was similar to those
eported in the literature [12] (E0 = 151–295 kJ mol−1 for CO, CO2,
2O, etc.).

The experimental data and model prediction of evolved species
re shown in Fig. 2. By comparing the model predictions with the
xperimental data, the following observations can be made on the
asis of Fig. 2:

The model prediction matched well with the experimental data
for all samples.
The agreement of model prediction and experimental data was
excellent for the absorbent cotton, partly because of the fact that
all volatile species evolved in a single peak.
The agreement of model prediction and experimental data was
not so accurate for the bamboo stick, compared to the absorbent
cotton and the medical respirator. This was partly because

the volatile species evolves in multiple peaks, and the ther-
mal decomposition temperature range of the bamboo stick was
widest of these three samples.
The model for hydrocarbon evolution was most complicated of
all species because of the fact that the hydrocarbon evolved in
the most peaks.
8.0 0.003345

rsor material are numbered 1, 2, etc.

. Conclusions

TG combining with FTIR is a useful tool in dynamic analysis as it
onitors continuously the time dependent evolution of the volatile

pecies. Also, kinetic parameters for a pyrolysis model based on
arallel, independent, first-order reactions with Gaussian distribu-
ion of activated energies were determined from TG-FTIR data of
ample and through a direct search method based on the grid tech-
ique presented in this study. Determined kinetic parameters can
e used to get the yield and rate of evolution for individual pyrolysis
roducts.

The results presented in this work indicated that the model
an predict the experimental data with a reasonable accuracy. The
resent pyrolysis model may be used for stand-alone devolatiliza-
ion applications as well as for a submodel in a CFD code. Further
ork should be conducted for other medical waste materials, so

hat the medical pyrolysis process can be fully understood. The
inetic parameters and pyrolysis model can be used as source terms
n the species transport equation in CFD simulation to fulfill the
FD modeling of medical waste pyrolysis. Such a model would
e valuable for understanding and improving the medical waste

ncineration process.
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14] M. Günes, S. Günş, A direct search method for determination of DAEM kinetic
parameters from nonisothermal TGA data (note), Appl. Math. Comput. 130

(2002) 619–628.

15] D.S. Thakur, H.E. Nuttall, Kinetic of pyrolysis of Moroccan Oil Shale by thermo-
gravimetry, Ind. Eng. Chem. Res. 26 (1987) 1351–1356.

16] Y.H. Xiang, Y. Wang, J.M. Zhang, J.J. Huang, J.H. Wu, Study on combustion kinetics
of partial gasified coal char by using distributed activation energy model, J.
Combust. Sci. Tech. (China) 9 (2003) 566–570.

[

aterials 162 (2009) 646–651 651

17] S. Tia, S.C. Bhattacharya, P. Wibulswas, Thermogravimetric analysis of
Thailignite-I. Pyrolysis kinetics, Energy Convers. Manage. 31 (1991) 265–
276.

18] J.M. Cai, R.H. Liu, New distributed activation energy model: numerical solu-
tion and application to pyrolysis kinetics of some types of biomass, Bioresour.
Technol. 99 (2008) 2795–2799.

19] J.M. Cai, R.H. Liu, Parametric study of the nonisothermal nth-order distributed
activation energy model involved the Weibull distribution for biomass pyroly-
sis, J. Therm. Anal. Calorim. 89 (2007) 971–975.

20] J.M. Cai, F. He, F.S. Yao, Nonisothermal nth-order DAEM equation and its para-
metric study-use in the kinetic analysis of biomass pyrolysis, J. Math. Chem. 42
(2006) 949–956.

21] A. Arenillas, F. Rubiera, C. Pevida, J.J. Pis, A comparison of different methods for
predicting coal devolatilisation kinetics, J. Anal. Appl. Pyrolysis 58–59 (2001)
685–701.

22] J. Pallarés, I. Arauzo, A. Williams, Integration of CFD codes and advanced
combustion models for quantitative burnout determination, Fuel 86 (2007)
2283–2290.

23] S. Niksa, A.R. Kerstein, FLASHCHAIN theory for rapid coal devolatilization kinet-
ics. 1. Formulation, Energy Fuels 5 (1991) 647–665.

24] S. Niksa, FLASHCHAIN theory for rapid coal devolatilization kinetics. 2. Impact
of operating conditions, Energy Fuels 5 (1991) 665–673.

25] S. Niksa, FLASHCHAIN theory for rapid coal devolatilization kinetics. 3.
Modeling the behavior of various coals, Energy Fuels 5 (1991) 673–
683.
670–676.
27] J.M. Cai, L.Q. Ji, Pattern search method for determination of DAEM kinetic

parameters from nonisothermal TGA data of biomass, J. Math. Chem. 42 (2007)
547–553.


	Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model
	Introduction
	Experimental materials and method
	Experimental materials
	Experimental method

	Theory and method
	DAEM equation
	Numerical solution of DAEM equation

	Results and discussion
	Conclusions
	Acknowledgments
	References


